325 research outputs found

    Investigation of the XCAT phantom as a validation tool in cardiac MRI tracking algorithms.

    Get PDF
    PURPOSE: To describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could influence MRI tracking algorithm design. METHODS: Twenty virtual patients were subjected to simulated MRI scans that closely model the proposed real-world scenario to allow verification of the tracking technique's algorithm. The generated phantoms provide ground-truth motions which were compared to the target motions output from our tracking algorithm. The patient-specific tracking error, ep, was the 3D difference (vector length) between the ground-truth and algorithm trajectories. The tracking errors of two combinations of new tracking algorithm functions that were anticipated to improve tracking accuracy were studied. Additionally, the correlation of key physiological parameters with tracking accuracy was investigated. RESULTS: Our original cardiac tracking algorithm resulted in a mean tracking error of 3.7 ± 0.6 mm over all virtual patients. The two combinations of tracking functions demonstrated comparable mean tracking errors however indicating that the optimal tracking algorithm may be patient-specific. CONCLUSIONS: Current and future MRI tracking strategies are likely to benefit from this virtual validation method since no time-resolved 4D ground-truth signal can currently be derived from purely image-based studies

    Nanohybrid biosensor based on mussel-inspired electro-cross-linking of tannic acid capped gold nanoparticles and enzymes

    Get PDF
    Complementary tools to classical analytical methods, enzymatic biosensors are widely applied in medical diagnosis due to their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Among the different protocols of enzyme immobilization, the covalent binding and cross-linking of enzymes ensure the great stability of the developed biosensor. Obtained manually by drop-casting using a specific cross-linker, this immobilization process is not suitable for the specific functionalization of a single electrode out of a microelectrode array. In the present work, we developed a nanohybrid enzymatic biosensor with high sensitivity by a mussel-inspired electro-cross-linking process using a cheap and abundant natural molecule (tannic acid, TA), gold salt, and native enzymes. Based on the use of a cheap natural compound and gold salt, this electro-cross-linking process based on catechol/amine reaction (i) is versatile, likely to be applied on any kind of enzymes, (ii) does not require the synthesis of a specific cross-linker, (ii) gives enzymatic biosensors with high and very stable sensitivity over two weeks upon storage at room temperature and (iv) is temporally and spatially controlled, allowing the specific functionalization of a single electrode out of a microelectrode array. Besides the development of microbiosensors, this process can also be used for the design of enzymatic biofuel cells

    Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery.

    Get PDF
    Radiosurgery to the pulmonary vein antrum in the left atrium (LA) has recently been proposed for non-invasive treatment of atrial fibrillation (AF). Precise real-time target localization during treatment is necessary due to complex respiratory and cardiac motion and high radiation doses. To determine the 3D position of the LA for motion compensation during radiosurgery, a tracking method based on orthogonal real-time MRI planes was developed for AF treatments with an MRI-guided radiotherapy system. Four healthy volunteers underwent cardiac MRI of the LA. Contractile motion was quantified on 3D LA models derived from 4D scans with 10 phases acquired in end-exhalation. Three localization strategies were developed and tested retrospectively on 2D real-time scans (sagittal, temporal resolution 100 ms, free breathing). The best-performing method was then used to measure 3D target positions in 2D-2D orthogonal planes (sagittal-coronal, temporal resolution 200-252 ms, free breathing) in 20 configurations of a digital phantom and in the volunteer data. The 3D target localization accuracy was quantified in the phantom and qualitatively assessed in the real data. Mean cardiac contraction was  ⩽  3.9 mm between maximum dilation and contraction but anisotropic. A template matching approach with two distinct template phases and ECG-based selection yielded the highest 2D accuracy of 1.2 mm. 3D target localization showed a mean error of 3.2 mm in the customized digital phantoms. Our algorithms were successfully applied to the 2D-2D volunteer data in which we measured a mean 3D LA motion extent of 16.5 mm (SI), 5.8 mm (AP) and 3.1 mm (LR). Real-time target localization on orthogonal MRI planes was successfully implemented for highly deformable targets treated in cardiac radiosurgery. The developed method measures target shifts caused by respiration and cardiac contraction. If the detected motion can be compensated accordingly, an MRI-guided radiotherapy system could potentially enable completely non-invasive treatment of AF

    A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities.

    Get PDF
    Purpose: Cardiac radioablation (CR), a new treatment for cardiac arrhythmias such as ventricular tachycardia and atrial fibrillation, has had promising clinical outcomes to date. There is consequent desire for rapid clinical adoption. However, CR presents unique challenges to radiation therapy, and it is paramount that clinical adoption be performed safely and effectively. Recent reviews comprehensively detail patient selection, clinical history, treatment outcomes, and treatment toxicities but only briefly mention the technical aspects of CR. To address this knowledge gap, this review collates currently available knowledge regarding CR technology choice and procedural details to help inform and guide clinics considering implementing their own CR program, to aid technique standardization, and to highlight areas that require further development or verification. Methods and materials: Original preclinical and clinical scientific articles that sufficiently detailed CR technical aspects, including pretreatment electrophysiology and imaging, motion analysis and management techniques, treatment planning, and/or treatment delivery, were identified within a comprehensive literature search. Results: Nineteen preclinical and 18 clinical scientific articles sufficiently detailed the technical aspects of CR treatment deliveries on live subjects. The technical aspects of these scientific articles were diverse: Preclinical treatments have been performed with brachytherapy, photons, protons, and carbon ions, and clinical treatments have been performed with photons using conventional, robotic, and magnetic resonance imaging guided systems. Other technical aspects demonstrated similar variability. Conclusions: This review summarizes the technical aspects and procedural details of preclinical and clinical CR treatment deliveries and highlights the complexity and current variability of CR. There is need for standardized procedural reporting to aid multicenter and multiplatform evaluation and potential for significant technological improvements in imaging, planning, delivery, and monitoring to maximize the clinical outcomes for selected patients with arrhythmia

    “Quem ensina também aprende” : a formação pela prática de professores primários na província do Paraná

    Full text link

    The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases

    Get PDF
    Background: The intent of this pooled analysis as part of the German society for radiation oncology (DEGRO)stereotactic body radiotherapy (SBRT) initiative was to analyze the patterns of care of SBRT for liver oligometastases and to derive factors influencing treated metastases control and overall survival in a large patient cohort. Methods: From 17 German and Swiss centers, data on all patients treated for liver oligometastases with SBRT since its introduction in 1997 has been collected and entered into a centralized database. In addition to patient and tumor characteristics, data on immobilization, image guidance and motion management as well as dose prescription and fractionation has been gathered. Besides dose response and survival statistics, time trends of the aforementioned variables have been investigated. Results: In total, 474 patients with 623 liver oligometastases (median 1 lesion/patient; range 1–4) have been collected from 1997 until 2015. Predominant histologies were colorectal cancer (n= 213 pts.; 300 lesions) and breast cancer (n= 57; 81 lesions). All centers employed an SBRT specific setup. Initially, stereotactic coordinates and CT simulation were used for treatment set-up (55%), but eventually were replaced by CBCT guidance (28%) or more recently robotic tracking (17%). High variance in fraction (fx) number (median 1 fx; range 1–13) and dose per fraction (median: 18.5 Gy; range 3–37.5 Gy) was observed, although median BED remained consistently high after an initial learning curve. Median follow-up time was 15 months; median overall survival after SBRT was 24 months. One- and 2-year treated metastases control rate of treated lesions was 77% and 64%; if maximum isocenter biological equivalent dose (BED) was greater than 150 Gy EQD2Gy, it increased to 83% and 70%, respectively. Besides radiation dose colorectal and breast histology and motion management methods were associated with improved treated metastases control

    Interobserver agreement on definition of the target volume in stereotactic radiotherapy for pancreatic adenocarcinoma using different imaging modalities

    Full text link
    PURPOSE The aim of this study was to evaluate interobserver agreement (IOA) on target volume definition for pancreatic cancer (PACA) within the Radiosurgery and Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (DEGRO) and to identify the influence of imaging modalities on the definition of the target volumes. METHODS Two cases of locally advanced PACA and one local recurrence were selected from a large SBRT database. Delineation was based on either a planning 4D CT with or without (w/wo) IV contrast, w/wo PET/CT, and w/wo diagnostic MRI. Novel compared to other studies, a combination of four metrics was used to integrate several aspects of target volume segmentation: the Dice coefficient (DSC), the Hausdorff distance (HD), the probabilistic distance (PBD), and the volumetric similarity (VS). RESULTS For all three GTVs, the median DSC was 0.75 (range 0.17-0.95), the median HD 15 (range 3.22-67.11) mm, the median PBD 0.33 (range 0.06-4.86), and the median VS was 0.88 (range 0.31-1). For ITVs and PTVs the results were similar. When comparing the imaging modalities for delineation, the best agreement for the GTV was achieved using PET/CT, and for the ITV and PTV using 4D PET/CT, in treatment position with abdominal compression. CONCLUSION Overall, there was good GTV agreement (DSC). Combined metrics appeared to allow a more valid detection of interobserver variation. For SBRT, either 4D PET/CT or 3D PET/CT in treatment position with abdominal compression leads to better agreement and should be considered as a very useful imaging modality for the definition of treatment volumes in pancreatic SBRT. Contouring does not appear to be the weakest link in the treatment planning chain of SBRT for PACA
    • …
    corecore